Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 11: 559059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013977

RESUMEN

The discovery of nickel hyperaccumulation, in Pycnandra acuminata, was the start of a global quest in this fascinating phenomenon. Despite recent advances in the physiology and molecular genetics of hyperaccumulation, the mechanisms and tolerance of Ni accumulation in the most extreme example reported to date, P. acuminata, remains enigmatic. We conducted a hydroponic experiment to establish Ni tolerance levels and translocation patterns in roots and shoots of P. acuminata, and analyzed elemental partitioning to gain insights into Ni regulation. We combined a phylogeny and foliar Ni concentrations to assess the incidence of hyperaccumulation within the genus Pycnandra. Hydroponic dosing experiments revealed that P. acuminata can resist extreme Ni concentrations in solution (up to 3,000 µM), and dosing at 100 µM Ni was beneficial to growth. All plant parts were highly enriched in Ni, but the latex had extreme Ni concentrations (124,000 µg g-1). Hyperaccumulation evolved independently in only two subgenera and five species of the genus Pycnandra. The extremely high level of Ni tolerance is posited to derive from the unique properties of laticifers. The evolutionary and ecological significance of Ni hyperaccumulation in Pycnandra is discussed in light of these findings. We suggest that Ni-rich laticifers might be more widespread in the plant kingdom and that more investigation is warranted.

2.
Ann Bot ; 126(5): 905-914, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32577727

RESUMEN

BACKGROUND AND AIMS: Hybanthus austrocaledonicus (Violaceae) is a nickel (Ni) hyperaccumulator endemic to New Caledonia. One of the specimens stored at the local herbarium had a strip of bark with a remarkably green phloem tissue attached to the sheet containing over 4 wt% Ni. This study aimed to collect field samples from the original H. austrocaledonicus locality to confirm the nature of the green 'nickel-rich phloem' in this taxon and to systematically assess the occurrence of Ni hyperaccumulation in H. austrocaledonicus and Hybanthus caledonicus populations. METHODS: X-ray fluorescence spectroscopy scanning of all collections of the genus Hybanthus (236 specimens) was undertaken at the Herbarium of New Caledonia to reveal incidences of Ni accumulation in populations of H. austrocaledonicus and H. caledonicus. In parallel, micro-analytical investigations were performed via synchrotron X-ray fluorescence microscopy (XFM) and scanning electron microscopy with X-ray microanalysis (SEM-EDS). KEY RESULTS: The extensive scanning demonstrated that Ni hyperaccumulation is not a characteristic common to all populations in the endemic Hybanthus species. Synchrotron XFM revealed that Ni was exclusively concentrated in the epidermal cells of the leaf blade and petiole, conforming with the majority of (tropical) Ni hyperaccumulator plants studied to date. SEM-EDS of freeze-dried and frozen-hydrated samples revealed the presence of dense solid deposits in the phloem bundles that contained >8 wt% nickel. CONCLUSIONS: The occurrence of extremely Ni-rich green phloem tissues appears to be a characteristic feature of tropical Ni hyperaccumulator plants.


Asunto(s)
Níquel , Violaceae , Nueva Caledonia , Níquel/análisis , Floema , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...